BOOK II
CHAPTER I
PRINCIPES GÉNÉRAUX DE CETTE THÉORIE

Pierre Simon Laplace

Théorie Analytique des Probabilités OC 7 §§1–2, pp. 181–190

GENERAL PRINCIPLES OF THIS THEORY

Definition of probability. Its measure is the ratio of the number of favorable cases to the one of all possible cases.

The probability of an event composed of two simple events is the product of the probability of one of these events, by the probability that, this event having arrived, the other event will take place.

The probability of a future event, deduced from an observed event, is the quotient of the division of the probability of the event composed of these two events and determined a priori by the probability of the observed event, determined similarly a priori.

If an observed event is able to result from \(n \) different causes, their probabilities are respectively, as the probabilities of the event, deduced from their existence, and the probability of each of them is a fraction of which the numerator is the probability of the event under the hypothesis of the existence of the cause, and of which the denominator is the sum of the similar probabilities, relative to all the causes. If these diverse causes considered a priori are unequally probable, it is necessary, instead of the probability of the event, resulting from each cause, to employ the product of this probability by that of the cause itself.

The probability of a future event is the sum of the products of the probability of each cause, deduced from the observed event, by the probability that this cause existing, the future event will take place.

On the influence that the unknown difference which is able to exist among some simple events must have on the results of the Calculus of Probabilities that we suppose equally possible. This difference increases the probability of the events composed of the repetition of one same event N° 1.

On the mathematical and moral expectations. The first is the product of the expected good by the probability to obtain it; the second depends on the value relative to the expected good. The most natural and simplest rule in order to estimate this value consists in supposing the value relative to one infinitely small sum in direct ratio of its absolute value and in inverse ratio to the total good of the interested person. N° 2.

*Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier University, Cincinnati, OH. January 6, 2014
§1. We have seen in the Introduction that the probability of an event is the ratio of the number of cases which are favorable to it to the number of all possible cases, when nothing supports belief that one of these cases must arrive rather than the others, that which renders them, for us, equally possible. The just estimation of these diverse cases is one of the most delicate points of the Analysis of chances.

If all the cases are not equally possible, we will determine their respective possibilities, and then the probability of the event will be the sum of the probabilities of each favorable case. In fact, let us name \(p \) the probability of the first of these cases. This probability is relative to the subdivision of all the cases into some others equally possible. Let \(N \) be the sum of all the cases thus subdivided, and \(n \) the sum of those cases which are favorable to the first case; we will have

\[
p = \frac{n}{N}.
\]

We will have similarly

\[
p' = \frac{n'}{N}, \quad p'' = \frac{n''}{N}, \quad \ldots,
\]

by marking with one stroke, with two strokes, . . . the letters \(p \) and \(n \), relatively to the second case, to the third, Now the probability of the event of which there is question is, by the same definition of probability, equal to

\[
\frac{n + n' + n'' + \cdots}{N},
\]

it is therefore equal to \(p + p' + p'' + \cdots \).

When an event is composed of two simple events, the one independent of the other, it is clear that the number of all possible cases is the product of the two numbers which express all the possible cases relative to each simple event, because each of the cases relative to one of these events is able to be combined with all the cases relative to the other event. By the same reason, the number of cases favorable to the composite event is the product of the two numbers which express the cases favorable to each simple event; the probability of the composite event is therefore then the product of the probabilities of each simple event. Thus the probability to bring forth twice consecutively one ace with one die is one thirty-sixth, when we suppose the faces of the die perfectly equal, because the number of all possible cases in two trials is thirty-six, each case of the first cast being able to be combined with the six cases of the second, and among all these cases one alone gives two aces consecutively.

In general, if \(p, p', p'', \ldots \) are the respective possibilities of any number of simple events independent of one another, the product \(p.p'.p'' \ldots \) will be the probability of an event composed of these events.

If the simple events are linked among them in a manner that the supposition of the arrival of the first influences the probability of the arrival of the second, we will have the probability of the composite event, by determining: 1° the probability of the first event; 2° the probability that, this event having arrived, the second will take place.

In order to demonstrate this principle in a general manner, let us name \(p \) the number of all the possible cases, and let us suppose that in this number there are of them \(p' \)
favorable to the first event. Let us suppose next that, in the number \(p' \), there are \(q \) favorable to the second event; it is clear that \(\frac{q}{p'} \) will be the probability of the composite event. But the probability of the first event is \(\frac{p'}{p} \), the probability that, this event having arrived, the second will take place is \(\frac{q}{p} \); because then, one of the cases \(p' \) needing to exist, we must consider only these cases. Now we have

\[
\frac{q}{p} = \frac{p'}{p} \cdot \frac{q}{p'}
\]

that which is the translation into Analysis of the principle enunciated above.

In considering how a composite event the observed event joins to a future event, the probability of this last event, deduced from the observed event, is evidently the probability that, the observed event taking place, the future event will take place similarly; now, by the principle that we have just exposed, this probability multiplied by that of the observed event, determined \textit{a priori} or independently from that which is already arrived, is equal to that of the composite event determined \textit{a priori}; we have therefore this new principle, relative to the probability of future events, deduced from observed events:

The probability of a future event, deduced from an observed event, is the quotient of the division of the probability of the event composed of these two events, and determined \textit{a priori}, by the probability of the observed event, determined similarly \textit{a priori}.

Thence results further this other principle relative to the probability of causes, deduced from observed events.

If an observed event is able to result from \(n \) different causes, their probabilities are respectively as the probabilities of the event, deduced from their existence; and the probability of each of them is a fraction of which the numerator is the probability of the event, under the hypothesis of the existence of the cause, and of which the denominator is the sum of the similar probabilities, relative to all the causes.

Let us consider, in fact, as a composite event the observed event, resulting from one of these causes. The probability of this composite event, a probability that we will designate by \(E \), will be, by that which precedes, equal to the product of the probability of the observed event, determined \textit{a priori} and that we will name \(F \), by the probability that, this event taking place, the cause of which there is concern exists, a probability which is that of the cause, deduced from the observed event, and that we will name \(P \). We will have therefore

\[
P = \frac{E}{F}.
\]

The probability of the composite event is the product of the probability of the cause by the probability that, this cause taking place, the event will arrive, a probability that we will designate by \(H \). All the causes being supposed \textit{a priori} equally possible, the probability of each of them is \(\frac{1}{n} \); we have therefore

\[
E = \frac{H}{n}.
\]

The probability of the observed event is the sum of all the \(E \) relative to each cause; by
designating therefore by \(S \frac{H}{n} \) the sum of all the values of \(\frac{H}{n} \), we will have

\[F = S \frac{H}{n}; \]

the equation \(P = \frac{E}{F} \) will become therefore

\[P = \frac{H}{SH}; \]

that which is the principle enunciated above, when all the causes are \textit{a priori} equally possible. If this is not, by naming \(p \) the probability \textit{a priori} of the cause that we have just considered, we will have

\[E = Hp, \]

and, by following the preceding reasoning, we will find

\[P = \frac{Hp}{SHp}; \]

that which gives the probabilities of the diverse causes, when they are not all equally possible \textit{a priori}.

In order to apply the preceding principle to an example, let us suppose that an urn contains three balls of which each is able to be only white or black; that after having drawn one ball, we restore it to the urn in order to proceed to a new drawing, and that after \(m \) drawings, we have brought forth only some white balls. It is clear that we are able to make \textit{a priori} only four hypotheses; because the balls are able to be either all white, or two whites and one black, or two blacks and one white, or finally all black. If we consider these hypotheses as so many causes of the observed event, the probabilities of the event relative to these causes will be

\[1, \frac{2^m}{3^m}, \frac{1}{3^m}, 0. \]

The respective probabilities of these hypotheses, deduced from the observed event, will be therefore, by the third principle,

\[\frac{2^m}{3^m + 2^m + 1}, \frac{2^m}{3^m + 2^m + 1}, \frac{1}{3^m + 2^m + 1}, 0. \]

We see, besides, that it is useless to have regard to the hypotheses which exclude the event, because, the resulting probability of these hypotheses being null, their omission changes not at all the expressions of the other probabilities.

If we wish to have the probability to bring forth only some black balls in the following \(m' \) drawings, we will determine \textit{a priori} the probabilities to bring forth first \(m \) white balls, next \(m' \) black balls. These probabilities are, relatively to the preceding hypotheses,

\[0, \frac{2^m}{3^m + m'}, \frac{2^m}{3^m + m'}, 0, \]
and as, *a priori*, the four hypotheses are equally possible, the probability of the composite event will be the quarter of the sum of the four preceding probabilities, or

\[
\frac{1}{4} \left(\frac{2^m}{3^m} + \frac{2^{m'}}{3^{m'}} \right).
\]

The probabilities of the observed event, determined *a priori*, under the preceding four hypotheses, being respectively

\[
\frac{3^m}{3^m}, \quad \frac{2^m}{3^m}, \quad \frac{1}{3^m}, \quad 0,
\]

the quarter of their sum, or

\[
\frac{1}{4} \left(\frac{3^m + 2^m + 1}{3^m} \right),
\]

will be the probability of the observed event, determined *a priori*; by dividing therefore the probability of the composite event by this probability, we will have, by the second principle,

\[
\frac{2^m + 2^{m'}}{3^{m'}(3^m + 2^m + 1)},
\]

for the probability to bring forth \(m'\) black balls in the \(m'\) drawings following.

We are able further to determine this probability by the following principle:

The probability of a future event is the sum of the products of the probability of each cause, deduced from the observed event, by the probability that, this cause existing, the future event will take place.

Here the probabilities of each cause, deduced from the observed event, are, as we have seen,

\[
\frac{3^m}{3^m + 2^m + 1}, \quad \frac{2^m}{3^m + 2^m + 1}, \quad \frac{1}{3^m + 2^m + 1}, \quad 0;
\]

the probabilities of the future event, relative to these causes, are respectively

\[
0, \quad \frac{1}{3^{m'}}, \quad \frac{2^{m'}}{3^{m'}}, \quad 1;
\]

the sum of their respective products, or

\[
\frac{2^m + 2^{m'}}{3^{m'}(3^m + 2^m + 1)},
\]

will be the probability of the future event, deduced from the observed event, that which is conformed to that which precedes.

If we suppose four balls in the urn, and that having brought forth a white ball at the first drawing, we seek the probability to bring forth only some black balls in the following \(m'\) drawings, we will find, by the principles exposed above, this probability equal to

\[
\frac{3 + 2^{m'+1} + 3^{m'}}{10.4^{m'}}.
\]
If the number of white balls equals the one of the black, the probability to bring forth only some black balls in \(m'\) drawings is \(\frac{1}{2^{m'}}\). It surpasses the preceding when \(m'\) is equal or less than 5; but it becomes inferior to it when \(m'\) surpasses 5, although the white ball extracted first from the urn indicates a superiority in the number of white balls. The explication of this paradox holds in this that this indication excludes not at all the superiority of the number of black balls; it renders it only less probable, instead that the supposition of a perfect equality between the number of whites and the one of the blacks excludes this superiority; now this superiority, however small that its probability be, must render the probability to bring forth consecutively \(m'\) black balls greater than the case of equality of the colors, when \(m'\) is considerable.

The inequality which is able to exist between some things that we suppose perfectly similar is able to have on the results of the Calculus of Probabilities a sensible influence which merits a particular attention. Let us consider the game of heads and tails, and let us suppose that it is equally easy to bring forth heads as tails; then the probability to bring forth heads at the first trial is \(\frac{1}{2}\), and that to bring it forth two times consecutively is \(\frac{1}{4}\). But if there exists in the coin an inequality which makes one of the faces appear rather than the other, without us knowing the face that this inequality favors, the probability to bring forth heads at the first trial will remain always \(\frac{1}{2}\), because, in the ignorance where one is of the face that this inequality favors, as much as the probability of the simple event is increased if this inequality is favorable to it, so much is it diminished if this inequality is contrary to it. But the probability to bring forth heads two times consecutively is increased, notwithstanding this ignorance; because this probability is equal to that to bring forth heads at the first trial, multiplied by the probability that, having brought it forth at the first trial, we will bring it forth at the second; now its arrival at the first trial is a motive to believe that the inequality of the coin favors it; it increases therefore the probability to bring it forth at the second; thus the product of the two probabilities is increased by this inequality. In order to submit this object to calculation, let us suppose that the inequality of the coin increases by the quantity \(\alpha\) the probability of the simple event that it favors. If this event is heads, the probability will be \(\frac{1}{2} + \alpha\), and the probability to bring it forth two times consecutively will be \((\frac{1}{2} + \alpha)^2\). If the event favored is tails, the probability of heads will be \(\frac{1}{2} - \alpha\), and the probability to bring it forth two times consecutively will be \((\frac{1}{2} - \alpha)^2\). As we have no reason in advance to believe that the inequality favors the one rather than the other of the simple events, it is clear that, in order to have the probability of the composite event heads-heads, it is necessary to add the two preceding probabilities and to take the half of their sum, that which gives \(\frac{1}{4} + \alpha^2\) for this probability: it is also the probability of tails-tails. We will find by the same reasoning that the probability of the composite event heads-tails or tails-heads is \(\frac{1}{4} - \alpha^2\); consequently, it is less than that of the repetition of the same simple event.

The preceding considerations are able to be extended to any events whatsoever, \(p\) representing the probability of a simple event, and \(1 - p\) that of the other event; if we designate by \(P\) the probability of a result relative to these events, and if we suppose that \(p\) is really \(p \pm \alpha\), \(\alpha\) being an unknown quantity, in the same way as the sign which
affects it, the probability P of the result will be

$$P + \frac{1}{1 \cdot 2} \alpha^2 \frac{d^2 P}{dp^2} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} \alpha^4 \frac{d^4 P}{dp^4} + \cdots$$

By making $P = p^n$, that is to say by supposing that the result relative to the events are n times the repetition of the first, the probability P will become

$$p^n + \frac{n(n-1)}{1 \cdot 2} \alpha^2 p^{n-2} + \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4} \alpha^4 p^{n-4} + \cdots$$

Thus the unknown error, that we are able to suppose in the probability of the simple events, increases always the probability of the composite events of the repetition of the same event.

§2. The probability of events serves to determine the expectation\(^1\) and the fear of the persons interested in their existence. The word espérance has diverse meanings; it expresses generally the advantage of the one who awaits any good, under a supposition that is only probable. In the theory of chances, this advantage is the product of the expected sum by the probability to obtain it; it is the partial sum which must return when we no longer wish to incur the risks of the event, by supposing that the apportionment of the entire sum is made proportional to the probabilities. This manner to apportion it is alone equitable, when we set aside all strange circumstance, because with an equal degree of probability we have an equal right with respect to the expected sum. We will name this advantage mathematical expectation, in order to distinguish it from moral expectation which depends, as it does, on the expected good and on the probability to obtain it, but which is regulated further on a thousand variable circumstances that it is nearly always impossible to define, and further yet to subject to the calculus. These circumstances, it is true, making only to increase or to decrease the value of the expected good, we are able to consider the moral expectation itself as the product of this value by the probability to obtain it; but we must then distinguish, in the expected good, its value relative to its absolute value: the latter is independent of the motives which make it desired, whereas the first increases with these motives.

We are not able to give a general rule in order to estimate this relative value; however it is natural to suppose the value relative to an infinitely small sum, in direct ratio to its absolute value, in inverse ratio of the total good of the interested person. In fact, it is clear that a franc has very little value for the one who possesses a great number of them, and that the most natural manner to estimate its relative value is to suppose it in inverse ratio to this number.

Such are the general principals of the Analysis of Probabilities. We will now apply them to the most delicate and the most difficult questions of this analysis. But, in order to put in order in this matter, we will treat first the questions in which the probabilities of the simple events are given; we will consider next those in which these probabilities are unknown and must be determined by the observed events.

\(^1\)espérance